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The present work addresses the development of an experimental and 
computational procedure for validating finite element models. A torus 
structure, part of an inflatable/rigidizable Hexapod, is used to demonstrate 
the approach. Because of fabrication, materials, and geometric uncertainties, 
a statistical approach combined with optimization is used to modify key 
model parameters. Static test results are used to update stiffness parameters 
and dynamic test results are used to update the mass distribution. Updated 
parameters are computed using gradient and non-gradient based 
optimization algorithms. Results show significant improvements in model 
predictions after parameters are updated.  Lessons learned in the areas of test 
procedures, modeling approaches, and uncertainties quantification are 
presented. 
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Abstract 
In industry and in government, finite element analysis has become the standard high 
fidelity method for predicting structural performance of systems.  Although computer 
programs can handle large dimensional problems well, uncertainty in the parameters used 
in the finite element models often results in a mismatch between pre-test predictions and 
actual test results.  Often, uncertainty in these model parameters and even the selected 
modeling approach is not captured during model development, which then makes the 
model update task that much more challenging for the engineer. Although research in 
model updating has produced hundreds of papers, a universal approach still does not 
exist, partially because, from a mathematical viewpoint, model updating is an ill posed 
problem with no single solution.  Despite these challenges and limitations, engineers 
must provide accurate structural models to aid in making decisions regarding systems 
failure, safety, control system adequacy, etc.  This paper presents a model update 
procedure that uses parameter uncertainty propagation to evaluate the likelihood that a 
parameter set exists, and expresses this likelihood in terms of confidence intervals for 
static problems and principal components bounds for dynamic problems.    To compute a 
reconciling solution parameter updates are obtained by minimizing a quadratic 
performance criterion using a genetic optimization algorithm.  Because statistical analysis 
of complicated systems is computationally intensive and time consuming, a 
representative set of high fidelity solutions is used to create a Moving Least Squares 
(MLS) response surface model that is then used for statistical analysis and optimization.  
MLS provides the means to capture high fidelity solutions from structural analyses into 
response surface models. To provide the data to demonstrate the update procedure, 
limited static and dynamic tests are conducted using an inflated/rigidized torus structure. 
Details on testing, analysis, computation tools, uncertainty bounds, and update results are 
all presented.    
  

Introduction 
A significant part of this effort deals with the problem of model update to reconcile 
differences between test and analysis.  This, of course, is an area that has been 
investigated thoroughly by researchers in the US and abroad.  Although model update has 
been a very prolific area of research, no single technique is universally accepted and, 
from a deterministic viewpoint, one might concur with Avitabile [2000] when he referred 
to it as a problem with endless possibilities.  For years, the commercially available model 
update tools relied upon sensitivity information to judge the relative importance of 
parameters and to assist in making model changes. Friswell [1995] discusses many of the 



conventional sensitivity based approaches, some of which are implemented in 
commercial tools.  These tools, in the hands of experienced engineers, provide heuristic 
approaches for model updating that can work very well in reconciling differences 
between test and analysis; however, they also often suggest unrealistic parameter changes 
and give the engineer very little insight into the probabilistic nature of the problem.  It is 
this probabilistic aspect of the problem that has prompted extensive research aimed at 
addressing uncertainty, with noteworthy contributions from Hasselman et al., [1994]; 
Herendeen et al., [1998]; Alvin, [1997]; and Farhat and Hemez, [1993].  Hasselman 
discussed the propagation of parameter uncertainty in frequency response calculations 
and presented various approaches to handle the variability of response values near 
dynamic resonance conditions.  Herendeen et al., [1998] discussed a mathematical 
procedure using multi-disciplinary optimization to conduct analysis/test correlation 
studies of frequency response data.  Alvin [1997] extended a procedure developed by 
Farhat and Hemez, [1993] to improve convergence and to incorporate uncertainty 
information into the estimation process, taking full advantage of the model structure and 
sensitivity. To their credit, very high dimensional problems have been updated 
successfully using these techniques. However, in the end, the question about realism of 
updated parameters is still unanswered and left to the individual engineer to assess based 
on his/her experience. To properly address this question one would need to exploit the 
work that Montgomery [2001] has done in terms of Design of Experiments and Analysis 
of Variance as a means to judge parameter adequacy.  In the work of Uebelhart, [2005] 
tools from the Design of Experiments methodology are heavily relied upon for 
uncertainty quantification and parameter selection.  Regardless of the parameter selection 
approach, engineering judgment will always play a key role and these tools exist to guide 
the analyst.  

 
In the computational fluid dynamics (CFD) area, work by Oberkampf [2003] and Roach 
[1998] is leading the verification and validation of mathematical models effort.  In this 
area, techniques for systematic assessments of model adequacy and uncertainty 
quantification have been established along with standards and a common model update 
language.  Unfortunately, these efforts and the associated methods are just now slowly 
migrating to other disciplines (see Thacker [2005], for example).  The principles for 
model verification and validation set forth by the CFD community are applicable to many 
other disciplines but the metrics for assessment need to be modified.  Using their 
terminology, the work presented here is primarily a model calibration effort.  
   
Fundamental to the success of any model update effort is a clear understanding of the 
ability of a particular model to predict the observed behavior, even when the observed 
behavior is uncertain.  With this in mind, the approach here is focused primarily on the 
parameter uncertainty propagation and quantification, as opposed to a search for a 
specific reconciling solution. The process set forth follows a two-step approach that first 
uses parameter uncertainty propagation to evaluate uncertainty bounds and to gage the 
ability of the model to explain the observed behavior. After completing this step, one is 
able to state, in a probabilistic sense, the likelihood that a parameter set exists that 
explains the observed behavior.  Parameter variances, single and multi-parameter, are 
computed using response surface models to determine output statistics and confidence 
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intervals.  In contrast to static problems, dynamic problems use Frequency Response 
Functions (FRF) directly. In addition, to establish uncertainty bounds, discrete 
probabilities of maximum/minimum principal components as a function of frequency are 
used to determine the likelihood that a solution exists that reconciles the test FRF with 
analysis.  To obtain a parameter set that reconciles the model with test, nonlinear 
optimization using the quadratic objective function proposed in Hasselman et. al., 1994 is 
used. Since nonlinear optimization is computationally intensive, a moving least squares 
(MLS) response surface, developed by Krishnamurthy [2002], is created from finite 
element solutions and used during optimization.  Similarly, for dynamic problems, MLS 
is used not only to predict frequency response functions but also to search for an 
optimum solution.  Although Zhang [2005] proposed the use of a conventional response 
surface, MLS is used in this work because it allows accurate prediction of frequency 
response functions with relatively small dimensional response surface models.  Another 
aspect of this work that is slightly different from other published work is the use of 
Principal Components (PC) in the probabilistic assessment of bounds for dynamic 
problems.  Hassleman [2002] also used PC in a procedure he calls a PC-based statistical 
energy analysis for generic uncertainty quantification.   Our approach is very similar with 
the addition of PC maximum and minimum bounds.  By using PC bounds, this enables 
assessments of the probability of finding a solution before any optimization work is done.  
After the probability of finding a solution is established, optimization with a quadratic 
error function is used to find a solution to reconcile the model prediction with test. 
Although the solution itself is often perceived as the most important outcome of the 
update process from an engineering viewpoint, it should be recognized that it is only one 
possible solution to the problem; the proposed update solution is infinitely more valuable 
to the engineer when it is accompanied by some measure of confidence that the resulting 
parameter values are probable, which are established in this method. In our view, the 
most valuable aspect of this effort is a set of MATLAB script files that allow users to 
apply these techniques to a variety of linear or nonlinear problems. Future work needs to 
incorporate a probabilistic performance metric. 
 
Work cited in this area is not intended to be a comprehensive list of work, but rather 
examples of activities that guided some of the thinking behind the methods developed 
and described in this paper.   
 

Problem Formulation 
Any model update procedure begins with an initial assessment of the model adequacy 
and its intended use.  For example, if the model is developed to predict loads, detailed 
modeling of critical loaded regions must be included.  On the other hand, if the model is 
developed to support control design, critical structural modes are measured and calibrated 
against the model.  The intended use of the model determines the type of test and update 
procedure to follow.  In this work, the update procedure is developed such that static 
deformations as well as improved input/output models for control design can be handled 
within the same computational framework.  Although the approaches are computationally 
similar, the type of data used and the parameter selection process is different.  In the 
following sections, the model update process is described starting with the parameter 
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selection process and uncertainty propagation, optimization problem formulation, and the 
development of response surface models. 
 
Parameter Selection Process and Uncertainty Propagation 
Parameter selection for model update is perhaps the most difficult and important task the 
analyst has to undertake.  It is at this stage where engineering judgment and good 
understanding of modeling deficiencies come into play.  After judicious selection of an 
initial parameter set, probabilistic analysis is used to assess the likelihood that the 
measured responses can be adequately captured by model predictions.  In contrast to 
parameter selection approaches that use sensitivity matrices exclusively, here a “Monte 
Carlo” like simulation is used to conduct confidence interval calculations. Unlike 
conventional Monte Carlo simulations that require thousands of function evaluations, this 
simulation phase requires fewer function evaluations by concentrating on high probability 
intervals. In the end, these uncertainty interval calculations are aimed at determining how 
probable it is for our model to explain the measured response.  Although this is a 
computationally intensive task, the results are critical not only to answer the question 
about probability but also to provide the data that is ultimately used to update parameters. 
 
The parameter selection process can be divided into four steps: first, a parameter set is 
selected using engineering judgment; second, uncertainties for these parameters are 
prescribed in terms of probability distribution functions; third, statistical analysis of the 
output probability and bounds is computed; and finally an assessment of the probability 
that our model will capture the measured response is established. Of course, in the event 
that the initial parameter set is inappropriate, a modified set is selected and the process is 
repeated.  Probability assessments are all based on discrete probabilities computed using 
a prescribed number of parameter variations.  For example, using 100 parameter 
variations the discrete probability of observing a particular output set is simply 1/100.  
An output set includes all outputs predicted with a given parameter vector.  Our goal is to 
select a parameter set that makes the probability of capturing the measured response high, 
otherwise any subsequent attempts to update parameters is likely to have a low 
probability of explaining the test results.  After establishing that a solution that reconciles 
test with analysis exists within the range space of the parameter set selected the next step 
is to find such a solution using optimization.  The next section describes the problem 
formulation for optimization.             
 
Optimization Problem Formulation 
In contrast to conventional probabilistic analysis where parameters are selected to 
minimize the probability of exceeding some metric (e.g. stress, deflection, acceleration 
level), a deterministic criterion is used instead to quantify error differences between test 
and analysis.  To reconcile differences between test and analysis a commonly used 
performance metric (objective function) is:  
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Where is a vector of predicted responses corresponding to the parameter vector 
 and the i

1i qu %&!
1mv %&! th input load; 1m

o'
%&!  is a vector containing the nominal parameter 

values; 1i q
tu %&! is a vector of measured responses; m m

vvS %&!  and  are 
weighting matrices, r is the number of inputs, m is the number of parameters, and q is the 
number of outputs.  This form of the objective function, used extensively by Herendeen 
[1998] and others, penalizes both prediction errors and parameter changes from the 
nominal values. When the weighting matrices are replaced by covariance matrices in the 
optimization procedure, this solution approaches that of a Bayesian estimation process in 
the limit as the population tends to infinity.  

q q
uuS %&!

 
When reconciling differences between test and analysis FRF for dynamic problems the 
performance metric in Eq. (1) must be modified as follows: 

1
0 0

1

1

( , ) ( ) ( )

{( ( ) ( )) ( )( ( ) ( ))

T

vv
r

i i T i i
t uu t

i

F v u v v S v v

tr u j u j S j u j u j }( ( ( ( (

!

!

"

" ! ! #

! !$
           (  2)

In this case  is a matrix with the complex coefficients of the measured FRF for 
the i

fN qi
tu %&"

th input,  is a matrix with the predicted FRF, fN qiu %&" f fN N
uuS %&" is a frequency 

weighting matrix, fN is the number of spectral lines in the FRF, and (  is the frequency.  
 
Solutions to equations (1) and (2) can be obtained using both conventional gradient based 
optimization and more exhaustive search algorithms such as genetic algorithms.  Results 
for this paper use the genetic algorithm by Chipperfield [1994]. 
 
Depending on the type of structure being analyzed, FEM models and their solutions can 
be computationally intensive.  Since the parameter selection process relies on statistical 
analysis of the response data, it is important that no FEM solution is wasted.  A way to 
capture information from every computed solution, as parameters are changed, is to use 
response surface models.  For this purpose, the Moving Least Square algorithm is 
selected and briefly summarized in the following section. 
 
Moving Least Squares Response Surface Formulation 
A response surface model is a mathematical representation of input variables (variables 
that the user controls) and output variables (dependent variables).  Many papers have 
been published on response surface techniques but the approach selected and used is from 
Krishnamurthy [2002]. This method was selected over conventional techniques because it 
uses a spatially dependent model representation that is more accurate. In this formulation 
the input/output relationship is given in parametric form as: 
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where 1 qNU %&
#
" is vector of predictions, is a vector of responses (often 

obtained from high fidelity analyses and stacked row-wise), i is the i
1 qNU %&"

v th parameter vector 
from a sample population whereas  is a variable representing the parameters, N is the 
population size, is a user-defined function that weights the proximity of other 
parameter vectors on the response surface, and 

v
( )iw v

( )p v is a set of basis functions.  
Krishnamurthy [2002] provides several weighting functions to handle problems with 
different continuity requirements given as a function of the proximity radius, where the 
radius is defined as

2i  and l is often a user defined distance.  In our 
implementation of MLS the proximity radius is computed directly from data using a 
quadratic search to minimize the error between the data and the response surface 
prediction. Also to avoid having a catalog of weighting functions for problems with 
different continuity requirements, the sin

/v v l+ " !

( ) sin( ) /c + + +"  function is used instead.  
Since the sinc function looks like a hat, raising it to some power just sharpens it and 
therefore changes the number of neighboring points “under the hat”; in our 
implementation it is arbitrarily raised to the fifth power.  To report the quality of the MLS 
model the average error is computed as , where sum is the over all 
the components of the error vector, and reported for the cases discussed later. 

qNUUsume /|ˆ| !"

        
Sampling techniques are critical to the success of response surface techniques and 
statistical analysis.  For this work, a Hammersly [1960] sampling technique is used to 
generate all parameter variations. Hammersly sampling has proven to have good 
convergence behavior of statistical quantities (mean and variance) and excellent spatial 
coverage for multi-dimensional problems. 
 

Description of Test Structure 
NASA and Tennessee State University (TSU) have been working jointly on dynamics 
and controls of an inflatable/rigidizable hexapod, shown in Figure 1.  Since structures 
like this appear often as part of telescope assemblies, NASA is particularly interested in it 
for space applications. In spite of an initial effort to develop a FEM for control design, 
this initial model missed critical structural modes.  Instead of attempting to update the 
full hexapod model, the torus section shown in Figure 2 is used to evaluate the model 
update procedure.  The torus consists of twelve 0.0181 m diameter tubes arranged to form 
a 3.72 m circle with urethane composite joints connecting the tubes.  Tubes are fabricated 
using a thermoplastic graphite epoxy woven composite, developed by ILC-Dover, Inc, 
that decreases its modulus when heated above the glass transition temperature, allowing 
the material to be flattened folded or rolled into a smaller volume. For this application the 
tubes are rigidized prior to assembly and connected using joints cast from glass filled 
urethane.  Each tube has joints glued on each side that are fastened with bolts to form the 
torus shape. 
 

Experimental Results  
When studying ways to update models where static and dynamic test data are used, the 
type and quality of data collected is as important as the update process itself. Because the 
torus structure is built from extremely lightweight materials, testing requires special non-
contacting sensing techniques. The following sections describe the test efforts. 
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Static Test of Torus Section 
Static tests results are important to calibrate stiffness parameters and loads, however, to 
conduct tests with predictable boundary and loading conditions is a challenge. The static 
test configuration shown in the photograph of Figure 3 is the final configuration selected 
after a number of configuration changes (see Berger [2004]). In this configuration shown 
in Figure 4, the torus is in a horizontal position and supported at three locations 120 
degrees apart. Support 1 consists of an aluminum bracket rigidly connected to three 
points on the urethane joint flange on one end and fixed to the floor on the other end, 
with all rotations fixed.  Steel blocks provide support at locations 2 and 3 to simulate 
pinned-pinned conditions.  A point load is applied at one of the urethane joints in the 
vertical direction and displacement measurements are taken at 24 target locations 
(numbering shown in Figure 4) using the laser displacement sensor (Keyence model LK-
503) shown in Figure 5.  To collect data from all points, the displacement sensor is 
moved manually from one location to the next while the load is applied and removed for 
each individual measurement.  Output from the laser sensor is measured on a voltmeter 
and recorded manually. Data collected from two identical load cases yielded an average 
difference between the measurements of 0.112 mm, which coincides with the reported 
instrument resolution (0.1 mm) and also observed during calibration. With a load of 42.1 
N the deflection measurements at locations 5, 13 and 21 (support locations) fall below the 
instrument resolution and are not used in the update process. 
 
Dynamic Test of Torus Section 
Dynamic testing is conducted with the torus suspended horizontally, as shown in Figure 
6.  A spring /cable suspension system is designed such that all six suspensions 
frequencies are below the first torus frequency. An electromagnetic shaker is used to 
impart forces through a force gage attached to a Nylon stinger (3/32” diameter).  
Eighteen retro reflective targets are placed on the perimeter of the torus, Figure 7, and are 
oriented at a 45 degrees angle from the horizontal plane. These targets, placed coincident 
with nodes in the FEM, are there to provide an adequate reflective surface for an 
Ometron VH300+ Laser Doppler Vibrometer (LDV) used to measure velocity. To 
recover the location and orientation of each measured velocity vector, the LDV location 
and orientation with respect to the FEM coordinate system is recorded for post-
processing the data into components along the X,Y,Z of the global coordinate system. 
Although laborious, this process provides velocity components at arbitrary angles that 
would otherwise be difficult to measure. Note that the X-Y plane is horizontal and the Z 
direction is along the gravity vector.  For excitation, a sinusoidal sweep provides energy 
in the 3 to 110 Hz frequency range while the FRF data are collected at each target 
location. Three independent modal surveys are conducted with the shaker moved to three 
different locations; shaker locations 1 and 2 are along Z-axis and shaker location 3 is at 
90 degrees from vertical. 
 

Finite Element Model Description 
An initial FEM model of the hexapod, previously developed and reported in Adetona 
[2003], uses equivalent beam properties to model most of the structure. Correlation of the 
finite element model with dynamic data brought up more questions than answers, and 
prompted a model refinement investigation following a more incremental approach using 
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component data, starting with the torus. Here, a FEM model of the torus is created from 
CAD geometry using EDS-IDEAS and then exported to MSC/NASTRAN for analysis. A 
schematic of the FEM shown in Figure 8 contains 6,897 grid points with 41,382 degrees 
of freedom. Two-dimensional plate elements (CQUAD) are used to model the tube/joint 
assemblies. For the tubes, woven composite material properties are modeled using 
orthotropic material properties cards (MAT8). Tube material properties are derived using 
the fiber and resin properties in the rule of mixtures to calculate uni-directional composite 
properties. Through standard laminate codes, Vinson [1998] for example, the ‘effective 
single ply properties’ of the woven composite are determined. Similarly, the glass filled 
urethane joint properties are calculated using the rule of mixtures and are then input into 
the FEM as linear isotropic material properties (MAT1). Shell property cards (PSHELL) 
are used to specify plate thicknesses throughout the structure; however, inflated/rigidized 
structures do not exhibit the same thickness uniformity as conventional metal structures. 
Although tube thicknesses throughout the structure vary, in our study a uniform tube 
nominal thickness of 0.000356 m is used. Thicknesses of the joints also vary but the 
nominal value for the flange is 0.01016 m, the inner joint is 0.00634 m, and the outer 
joint is 0.00317 m. Other components like the spring/cable suspension system are 
incorporated using scalar spring elements (CELAS2) with stiffness of K1=3745 N/m, 
K2=3667.2 N/m, K3=3726 N/m whereas bar elements (CBAR) are used for the 1.6 mm 
diameter steel cable. Finally, boundary conditions are modeled using single-point 
constraints and selected grid points are defined to map the measurements and inputs 
locations.  
 

Computational Framework 
One of our goals is to develop computational tools that are independent of specific FEM 
programs to allow engineers to use our tools with the FEM solvers with which they have 
the most familiarity. Since MSC/NASTRAN is commonly used at NASA Langley, the 
most flexible approach is to manipulate the NASTRAN bulk data file structure directly. 
For cases where a different structural analysis program is used only the input/output 
interface to the program needs to change.  Figure 9 shows a data flow diagram 
implemented using MATLAB Script files. These script files modify the NASTRAN bulk 
data for statistical analyses and also read NASTRAN output punch files. Since all the 
results are stored within the MATLAB environment, all the MATLAB toolboxes are 
available for use.   
   

Discussion of Results 
 
Static Model Update Results 
Selection of parameters for model update is the most important step in the update 
process. Although researchers have proposed localization approaches to pinpoint problem 
areas in the model, often times engineering judgment, knowledge of parameter 
uncertainties, and sensitivity information seems to work best. In our problem, parameter 
uncertainties in the torus finite element model are associated with material properties and 
fabrication. Specifically, laminate thickness variation along the torus tubes, irregular 
cross-sectional areas, uncertainties in the material properties of the woven graphite/epoxy 
composite and urethane joints, tube geometry after rigidization, and the stiffness of the 
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glue tube/joint connection are all questionable.  Therefore, all these uncertainty sources 
must be considered during uncertainty quantification.   
 
Sensitivity information is often used during parameter selection but it is not sufficient by 
itself. For example, it is possible to come up with a very sensitive set of parameters that 
are unable to explain observed behavior.  For probabilistic analysis, confidence intervals, 
analysis of variance, and principal components are key tools for parameter selection. To 
avoid biasing the solution, the least informative probability distribution (uniform 
distribution) is assigned to each parameter along with judiciously selected upper and 
lower bounds.  With this selection the reasonableness of the parameter variations is 
assured.   
 
Analysis of variance is the primary tool used in the parameter selection phase for static 
problems.  To conduct the analysis of variance for the torus problem, an MLS response 
surface model (18 variables and order 2) is created using 300 NASTRAN predictions of 
the output displacement with the parameters in Table 1 distributed uniformly between the 
bounds under a 42.1 N applied load.  For this case the computed MLS average error is 

.  From the 300 NASTRAN solutions, one can compute the mean, variance, and 
confidence interval for each sensor output when all parameters are simultaneously varied; 
this will be referred to as the total variation. To study the individual parameter 
contribution to the total displacement variation, the MLS model is used instead of 
NASTRAN to generate simulated displacements by varying one parameter while all 
others are held at their nominal value. This allows one to compute the individual 
parameter contribution to the displacement mean, variance, and corresponding 
confidence interval.  In all subsequent results, a 95% confidence interval is used during 
this parameter selection process. Note that if the model is to explain the measured 
response, the 95 % confidence interval from the total displacement variation should 
contain the mean value of the measured displacement. Furthermore, if an individual 
parameter uncertainty contributes to a particular output variation, the individual 
parameter confidence interval must also be within the 95 % interval of the total variation.  
In other words, if the total displacement variation using all parameters is 

m7101 !%

,- 2. , for the 
95% confidence interval, individual parameter confidence intervals must also be within 
this interval.  With 18 parameters and 21 outputs, it is difficult to examine all the data at 
once to make decisions about the adequacy of the selected parameters.  A way to portray 
all this information in one plot is shown in Figure 10.  Along the abscissa is the parameter 
number, in the same order as in Table 1, the ordinate indicates the output number (shown 
in Figure 4) and at the intersection of those two is a colored square sized according to the 
total normalized displacement variance. The normalized variance is simply the sampled 
variance divided by max2, (computed value 0.00065 m) where max, is the maximum total 
variance from all the data. Hence, a filled square corresponds to a max4, variation. To 
assess the contribution from individual parameters, let the individual parameter interval 
be defined as pp ,- 2.  and the normalized interval be defined as max2)2( ,,-- pp .!  
and plotted in Figure 11 as black-line squares.  Since predicted mean displacements are 
not plotted, the color green is used to indicate that the measured displacement is captured 
by the model predicted interval; a red color indicates that measurement is out of the 95 % 
predicted interval. Although hard to see, output 11 is the only one red.  The column to the 
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right of Figure 10 (lined up with the output number) shows the predicted mean values in 
meters for the 42.1 N load.  From Figure 10 several observations should be made; all the 
selected parameters contribute significantly to outputs 1-3 and 20-21 variances, but other 
output locations only show small total variances, making the impact of parameter 
changes at those locations hard to detect and therefore hard to correct.  More importantly, 
for certain outputs such as number 11, the total variation predicted with our model does 
not capture test results indicating that this parameter set is unable to reconcile the 
solution.  
 
After selecting a set of parameters for update, a genetic algorithm is used with the MLS 
model to find a set of parameters to reconcile test data with analysis. The same response 
surface model generated and used for the analysis of variance is also used to minimize 
the objective function defined in Eq. (1).  
 
Figure 11 shows NASTRAN predictions of the static displacements and Figure 12 shows 
the measured mean displacements (solid blue line) from two tests.  Sensor numbering 
starts at 1 where the load is applied and increases around the circumference, as shown in 
Figure 4.  Hence, in Figure 12, points 1 and 24 are adjacent. With only two measurement 
sets, a t-distribution is used to compute the 95 % confidence interval that is marked with 
the plus symbols in Figure 12. This experimentally computed variance is used in Eq. (1) 
to define the weighting uu matrix while  is set to S 1!

vvS 121 10!% , to keep from biasing the 
solution towards the nominal value.  The dashed line corresponds to displacements using 
the updated set of parameters and the dotted line corresponds to displacements using the 
nominal values.  All predictions are computed using the MLS model.  Figure 13 
graphically shows the parameter changes from the mean after optimization with the 
length of the vertical lines indicating allowed parameter variation.  Black rectangles 
correspond to a decreased in value whereas white rectangles are increased values.  For 
example, the first parameter is reduced from 1.1 of the mean to less that 0.8.  Mean 
values are printed across the bottom of the figure for reference.  Finally, note that 
parameter 12 (tube shear modulus 34) is practically unchanged after optimization.     
 
Dynamic Model Update Results 
As described earlier, dynamic frequency response functions are measured using a laser 
vibrometer at 18 locations on the torus.  Unfortunately, the data collection process is time 
consuming (about 5 days per test), so only one data set was collected in time for this 
paper, which limits our ability to do uncertainty quantification of the test data.  
Nonetheless, the model update process framework is able to incorporate new results as 
they become available. In a way, the dynamic update problem is similar to the static 
update problem just discussed with an added dimension in terms of frequency.  This 
similarity is exploited to extend the MLS solution to dynamic problems where the FRF 
complex coefficients replace static displacements.   Furthermore, parameters variations 
are conducted the same way as in the static case except that the uncertainty quantification 
for dynamics uses principal components bounds instead of variances. 
 
Early in the development of the update algorithms, a decision was made to work with 
FRF data directly as opposed to parameters extracted from the FRF such as modal 
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frequency, damping, and mode shapes.  Although this approach requires more data 
storage at any given time, during the uncertainty quantification phase there is no risk of 
improperly pairing extracted features when reconciling analysis and tests.  For example, 
if modal frequencies and modes shapes are used, mapping of the measured and predicted 
values during update is a non-trivial task.   Moreover, during parameter uncertainty 
propagation, one needs to ensure that the same mode and frequency is being observed.  
None of these issues are present when working directly with the FRF.  
 
Principal components (PC) analysis provides the means to compare multi-input multi-
output problems efficiently.  To compute the principal components, the singular values of 
the frequency response function matrix at a particular frequency, sized q x r, are 
computed. For the case where q > r, the number of principal components is r. Analogous 
to principal strains or stresses in solid mechanics, these principal components correspond 
to the extreme values of the response.   When comparing models, instead of comparing 
the FRF for a particular input/output pair, the principal components are compared instead.  
Although the results in the following show a comparison of minimum and maximum 
principal values, all FRF data is used internally for a qualitative assessment. Figure 14 
shows a comparison of the MLS model (19 parameters, basis order 2, 300 NASTRAN 
solutions, and 801 frequency points) versus the finite element model (FEM) PC; crosses 
are for MLS predictions and dashed are for FEM.  The MLS average error for this case is 

m/N.  With 18 outputs and 3 inputs, to verify that the FEM and the MLS models 
are in agreement, all 54 individual FRF would need to be examined, as compared to one 
PC plot in Figure 14.    

57.1 10!%

 
The benefit of using principal components should be evident but their use is even more 
important during uncertainty quantification. For dynamic model updates, mode shapes 
and natural frequencies from NASTRAN solutions are assembled in MATLAB with 1 % 
modal damping to compute the predicted FRF.   From 300 individual FRF, PC for each 
solution are computed as a function of frequency. By counting the number of times a 
particular value occur, the probability of observing a set (as a function of frequency) of 
PC values from a population of 300 is 1/300, however, the probability of observing a 
particular PC value at a certain frequency is / 1/(300 )fN , where f  is defined in Eq. 
(2) as the number of spectral lines.  For a population of FEM solutions, given that the 
parameters are varied over their prescribed bounds, the maximum and minimum PC 
bound can be computed at each frequency point, for single and multi-parameter 
variations, with probability 

N

/ 1/( )fNN , where N is the population size.  If the test PC fall 
within the predicted PC bounds, then the probability of finding a set of parameters that 
captures the test response is also bounded and nonzero, i.e. a solution exist to predict the 
measure response.   
 
After considering various parameter sets, the set chosen is shown in Table 2.  With these 
parameters the PC bounds are computed and shown in Figure 15.  Dashed lines 
correspond to test PC (maximum and minimum values) whereas solid corresponds to 
FEM PC bounds. This parameter set is chosen because the test PC are captured within the 
FEM PC bounds, indicating that there is a probability 64 10!/ %  that a parameter set can 
be found to explain the measured response.  If multiple tests FRF are at hand, the PC for 
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each case can be superimposed onto Figure 15 to assess the adequacy of the parameter 
selection.  It is important to recognize that Figure 15 depicts in general the effects of 
parameter uncertainty in the FRF. Using the MLS model, the same PC analysis is 
conducted varying one parameter at a time while holding all other parameters at their 
nominal values to study the effect of the individual parameters.  These results, although 
not shown, are also used to select the set shown in Table 2.  
 
Another benefit of using principal components is for troubleshooting dynamic tests.  
Recall that the PC values can be thought off as the maximum and minimum system 
response due to a unit input. After examining Figure 15, the test engineer should realize 
that the excitation and/or measurements levels are drastically different in different 
directions. The problem arises when attempting to excite and observe the torus in-plane 
and out-of-plane modes.  To solve this problem both the shaker and laser positioning 
would need to be corrected as well as the sensor range.  Although efforts are underway to 
correct for test deficiencies, data from those tests are not available.    Pre-test analysis 
results obtained after the initial tests corroborated our suspicions that there are an 
insufficient number of sensors to distinguish among different modes. This hinders our 
ability to use conventional orthogonality of test and analysis modes to compare models. 
Nonetheless, if all FRF are reconciled between test and analysis, and enough data is 
collected to discern differences in mode shapes, all the conventional correlation tools can 
be applied as a post-processing for linear model correlation.   
 
To compare results before and after the dynamic update, Figure 16 shows the PC from 
the baseline NASTRAN model (including updated static parameters) and test.  Table 3 
shows the first 8 dominant frequencies corresponding to Figure 16.  Although the 
magnitudes are reasonable, most resonant frequencies are shifted from test and analysis.  
Figure 17 shows the NASTRAN PC with dynamic parameter updates and Figure 18 
shows parameter variations after optimization; black corresponds to parameters with 
decreased values and white are those with increased values.  After this update, higher 
frequency modes improved significantly but low frequency modes are shifted.  This low 
frequency shift is due to a slight mass change not constrained in the optimization step.  
Also Table 3 shows a comparison of the first eight dominant frequencies before and after 
optimization, showing a significant improvement in some of the high frequency modes.  
Examining the actual parameter changes, note that several parameters are nearly 
unchanged while others are at their extreme values. Often this would be a cause for 
concern but remember that parameter bounds are defined such that any value is equally 
probable, hence, from an engineering viewpoint acceptable. Furthermore, updated 
parameters after dynamic updates could impact the static solution.  This is in fact the case 
but in this example the impact is small compared to the problem uncertainty. Although an 
optimum parameter solution set is shown for one complete update cycle using both static 
and dynamic data, this is only one possible parameter set.  Uncertainty quantification of 
the measured data needs to be examined and the process repeated until all the observed 
data is explained by our model 
 
Finally, the last issue not mentioned thus far is the effect of extrapolation errors in the 
solution because MLS is used instead of NASTRAN.  Results have been shown using 

Horta, Reaves, and Lew 



both NASTRAN and MLS predictions but the optimum solution set is determined using 
MLS only.  Errors associated with differences between MLS and NASTRAN predictions 
will impact our predictive accuracy and the optimum parameter set values.  To refine the 
parameter solution, one should compute more high fidelity NASTRAN solutions near the 
optimum set.  However, the investment in using high fidelity solutions must be traded 
against remaining experimental and parameter uncertainty.  At this point, efforts are 
underway to quantify experimental uncertainty.                 
          

Concluding Remarks 
A procedure to conduct static and dynamic parameter updates of finite element models 
has been developed and demonstrated that integrates analysis of variance and principal 
components.  Analysis of variance and confidence intervals are used to bound the 
response uncertainty for static problems, but for dynamics principal components are used 
to assess uncertainty bounds.   These bounds establish the probability of finding a 
solution that reconciles test with analysis results.  In the formulation, a Moving Least 
Squares (MLS) response surface model is created and used to capture expensive time-
consuming high fidelity structural solutions into models for optimization, analysis of 
variance, and principal component analysis.  For parameter selection, analysis of variance 
is the primary tool used with static problems and principal components of the frequency 
responses are used for dynamic problems. By using MLS a relatively small number of 
high fidelity solutions are needed to construct the response surface model used in all 
subsequent analysis. In fact, MLS models enable the use of exhaustive optimization 
searches like those required by genetic algorithms; otherwise it would be impractical to 
use genetic algorithms with high fidelity models.   
 
For the hexapod torus demonstration problem, correlation of static displacements 
between test and analysis is improved to the point where the majority of the measured 
points are within the measurement uncertainty for 19 out of 21 measured outputs.  
Starting from the updated static solution, frequency response functions from 18 sensors 
and 3 excitation sources are used to reconcile test and analysis. An initial comparison of 
the dominant frequencies before and after the update shows that five 5 out of 8 
frequencies are significantly improved.  However, problems with the dynamic test setup 
hindered a full comparison of mode shapes at this time. 
 
Although finding a parameter set that reconciles the FEM with test is the ultimate goal 
from an engineering viewpoint, the true value of the work is in the uncertainty 
quantification and confidence interval calculations.  A particular solution, like the one 
presented, is one of many possibilities.  For the solution to be more meaningful, tighter 
probability statements would have to be computed.     
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Table 1.  Parameter Nominal and Updated values from static tests 
No. Parameter 

Description 
Nominal 
Values 

Updated 
Values 

1 Tube  E1,E2 (N/m2) 5.4217e+010 3.8000e+010 
2 Tube shear 25 (N/m2) 2.1578e+009 1.8997e+009 
3 Tube shear 26 ((N/m2) 2.1578e+009 2.361e+009 
4 Tube shear 27 (N/m2) 2.1578e+009 1.5100e+009 
5 Tube shear 26 (N/m2) 2.1578e+009 2.3686e+009 
6 Tube shear 28 (N/m2) 2.1578e+009 1.8495e+009 
7 Tube shear 29 (N/m2) 2.1578e+009 1.5919e+009 
8 Tube shear 30 (N/m2) 2.1578e+009 1.7473e+009 
9 Tube shear 31 (N/m2) 2.1578e+009 1.5234e+009 

10 Tube shear 32 (N/m2) 2.1578e+009 2.3162e+009 
11 Tube shear 33 (N/m2) 2.1578e+009 1.5100e+009 
12 Tube shear 34 (N/m2) 2.1578e+009 2.1607e+009 
13 Tube shear 35 (N/m2) 2.1578e+009 1.8155e+009 
14 Joint E  (N/m2) 3.033e+009 2.1200e+009 
15 Tube thickness 24 (m) 0.000356 0.000415 
16 Tube thickness 25 (m) 0.000356 0.000375 
17 Tube thickness 34 (m) 0.000356 0.000426 
18 Tube thickness 35 (m) 0.000356 0.000411 
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Table 2. Parameter Nominal and Updated values from dynamic tests 
No. Parameter 

Description 
Nominal 
Values 

Updated 
Values 

1 Stiffness K2 (N/m) 3667.2 3563.6 
2 Stiffness K1 (N/m) 3745 3715.1 
3 Stiffness K3 (N/m) 3726 3694.6 
4 Tube Density Mat8 10 (kg/m3) 1765 1466.6 
5 Joint Density Mat 2 (kg/m3) 1346.6 1456.7 
6 Joint Density Mat 5 (kg/m3) 1346.6 1348.6 
7 Joint Density Mat 6 (kg/m3) 1346.6 1427.9 
8 Joint Density Mat 7 (kg/m3) 1346.6 1343.6 
9 Joint Density Mat 8 (kg/m3) 1346.6 1405 

10 Joint Density Mat 9 (kg/m3) 1346.6 1251.3 
11 Joint Density Mat 11 (kg/m3) 1346.6 1264 
12 Joint Density Mat 12 (kg/m3) 1346.6 1193.3 
13 Joint Density Mat 13 (kg/m3) 1346.6 1305.8 
14 Joint Density Mat 14 (kg/m3) 1346.6 1271.6 
15 Joint Density Mat 15 (kg/m3) 1346.6 1374.2 
16 Joint Density Mat 16 (kg/m3) 1346.6 1156.8 
17 Joint thickness 4 (m) 0.00317 0.00291 
18 Joint thickness 8 (m) 0.00634 0.00576 
19 Flange thickness 1 (m) 0.01016 0.00817 

 
 
 
 
Table 3.  Comparison of the first eight peak frequencies shown for test, 
nominal, and update model 

 
Test 

Frequencies 
(Hz) 

Nominal Model 
Frequencies 

(Hz) 

Updated Model 
Frequencies 

(Hz) 
4.32 4.31 4.59 
4.63 4.61 4.97 
14.55 12.59 13.47 
18.75 17.59 18.75 
37.13 35.01 37.13 
49.60 45.52 48.71 
65.66 61.36 65.66 
83.08 81.96 80.89 
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Figure 2 – Torus test article

Figure 1 – TSU Hexapod structure
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Figure 5 – Torus static test measurement location
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Figure 6 – Torus dynamic test suspended configuration
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Figure 8  – Torus finite element model mesh with baseline plate thicknesses

1

2

3
4

56
7

8

9

10

11

12
13

14 15
16

17

18

Shaker 2-Z
Suspension 2

Shaker 3 - XY

Shaker 1-Z
Suspension 1

Suspension 3



Horta, Reaves, and Lew

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1
2

3
4
5

6
7
8

9
10
11

12
13

14
15
16

17
18
19

20
21

-0.005346
-0.004463

-0.003431
-0.001693
 0.000874

 0.001641
 0.001522
 0.001369

 0.000835
 0.000379
 0.000111

 0.000114
 0.000385

 0.000843
 0.001378
 0.001529

 0.001646
 0.000877
-0.001693

-0.003430
-0.004463
  Mean

Parameter No. 

O
ut

pu
t N

o.

 Max Variance 2Sigma : 0.00064521
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Figure 11 – Baseline torus FEM  static deflections
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Figure 12 – Torus static  deformation results for test, baseline FEM and 
updated FEM analysis
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Figure 13.  Summary of parameter changes for static problem 

Figure 14.  Comparison of principal components for MLS model and FEM
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Figure 15.  Principal component bounds with probability greater than 4e-06 

Figure 16.  Comparison of Principal components  for nominal solution and test
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Figure 17.  Comparison of principal components for test and
optimized solution

Figure 18.  Summary of parameter changes for dynamic solution 
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